
More JavaScript!
Higher-Order Functions, Callbacks, and Array

Methods

Higher-Order Functions

• A Higher-Order Function is any function that operates on
any other function, either by taking them in as arguments
or returning them.

• In JavaScript, this is facilitated by the fact that functions
are First-Class Functions

Higher-Order Functions

 function outerFunc(cb){

 return cb();

 }

• In the above example, the Higher-Order function is the
outerFunc function because it takes in a callback (cb)
and returns the invocation of the callback inside of it.

Callback Function

• A callback function is any function that is passed into
another function as an argument, which is then invoked
inside of the outer function to complete some kind of
routine or action.

• Callback functions can be declared functions, function
expressions, or even anonymous functions depending on
your needs and the context in which you are using them.

Callback Function

 function outerFunc(cb){

 return cb();

 }

• Looking at the same example from before, the callback in
this case is cb, as it is being passed into the outerFunc
function and is invoked inside of it.

Array Methods

• To solidify understanding of higher order functions and
callbacks, we are going to look at some of the more
popular iterative array methods provided for us by
JavaScript.

• Some of the most popular are forEach, map, and reduce

array.forEach()

• The forEach method takes a callback and runs it once for
each element in the array.

• forEach can also take an optional index argument to keep
track of the index that you are currently working with

• forEach function does not mutate the array that it is being
operated on, and does not return any value itself.

array.map()

• The map method takes a callback function and creates a
new array by performing the callback on each array
element.

• map can also take an optional index array.

• map does not mutate the original array. It instead returns
a new array of the same length as the original array with
the result of operating the callback function.

array.reduce()

• The reduce method takes a callback function and an
iterator (which can be any data type) and runs the callback
on each array element to reduce it to a single value.

• Your callback should take at least two arguments, which
are regularly known as previous and next. These will be
used to reduce each value in the array into the iterator,
and as such your callback must return a value to be used
on the next iteration.

• Reduce does not mutate the original array, but it does
return a new value based on the callback function.

